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Abstract. A method of describing the whole of the generating curve of a lamellibranch is sought. When
lengths and angles are used to describe an outline, much of the outline remains undefined. A curve can be

fitted to an outline and the coefficients in the particular approximation employed then define the outline.

Reasons are given for fitting a Tchebychev polynominal, rather than a spline, or Fourier series containing

both sine and cosine terms. Polar coordinates r and 6 are calculated for each point on a digitized outline.

Cos 6, rather than 6 is chosen as the independent variable when the Tchebychev coefficients are calculated.

It is found that about 100 irregular spaced data points are required to produce stable coefficients, and that

adequate numerical accuracy is obtained when the outline is described by the first six coefficients. These six

coefficients can also be used as shape discriminators. As the value of c 0 is a measure of size, it can be used

to standardize the other coefficients. The standardized coefficients can be used to compare the shape of the

generating curve of shells of different sizes.

Descriptions of the morphology of organisms should, ideally, be objective, reproducible, and
enable different forms to be distinguished. In this article the description of the lateral outline, or

generating curve (Raup 1966) of the Carboniferous non-marine bivalve genera Naiadites and
Curvirimula is discussed. The general form of the generating curve is elliptical. A point (the origin

of growth, or tip of the umbo) and a line (the hinge-line, which is straight, or only slightly curved

in the genera studied) define the orientation of these shells to which further descriptions can be

related. A coarse separation of shapes can be made qualitatively by simple terms such as outline

approximately triangular (text-fig. la), rectangular (text-fig. lb), or semicircular (text-fig. lc, d). The
distinction between text-fig. lc and text-fig. Id is more difficult to describe qualitatively. Measure-
ments of various lengths and angles have proved useful in describing and distinguishing shell forms

text-fig. 1 . Outlines of four shells which can be described qualitatively as

approximately (a) triangular, ( b )
rectangular, (c and d ) semicircular.

(Davies and Trueman 1927; Deleers and Pastiels 1947; Trueman and Weir 1955; Eager 1973; Hajkr,

Lukasova, Ruzicka, and Rehor 1974), but only a few points on the shell outline are defined. As
Bookstein (1978) notes, techniques which use ‘landmarks’, inter-landmark distances, and angles

ignore much of the shape of the outline. Between the landmarks the outline is undefined and cannot
be reproduced.

Papin and Khoroshev (1974) measured the radius of curvature (text-fig. 2, rc
; ) of successive parts

of the outline, indicating that sections of the curve should be described, rather than interpoint

distances. The value of the radius of curvature at Ph when calculated from the position of three

successive points P, 1? P
; , P/+1 (text-fig. 2) on the curve, is highly sensitive to the actual position

of the points P
i
_ l , P

i + i
. Accordingly, it is virtually impossible to obtain a reliable estimate of this
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text-fig. 2. Measurements on a shell outline. The hinge

OA is produced to B. P
i
^

1 , Ph Pi+l are three consecutive

points on the outline. rc
(

is the radius of curvature, t
;

the

tangent angle, and r, the distance from 0 of point P
t

.

quantity. For this reason the radius of curvature, and a related measurement, the tangent angle f,

(text-fig. 2) are not suitable as shape descriptors. Error in the measurement of the length r, (text-fig.

2), from the umbo to the point is due to the accuracy of the measuring device used and is not

related to the shape of the curve at P
t

. It is essential to choose a property of the curve which can

be measured accurately as a basis of a reproducible description. The length r
t

satisfies this condition.

With the advent of more sophisticated devices such as a digitizing table, the (x,y) coordinates

(text-fig. 6) of many points on an outline can be recorded with ease. A large number of unequally

spaced data points will yield an accurate reproduction. If the recorded points are used to redraw
the outline (text-fig. 3), a few equally spaced data points may not reproduce the outline accurately.

Although a large number of data points produce an accurate reproduction, for the purposes of

comparison it is necessary to look for a more economical way in which to represent the outline.

A variety of curve-fitting techniques exist which allow a numerical approximation to the fossil

outline to be derived. A set of numbers which represent the coefficients in the particular

approximation employed can then define the outline. For reasons which are discussed below, the

curve-fitting method chosen here is the Tchebychev polynomial. The purpose of this article is to

determine the reliability of the Tchebychev coefficients as shape descriptors and discriminators in

the practical context of bivalves with a straight hinge.

text-fig. 3. Reproduction of shell (a) from data points taken at 20° intervals and joined by ( b ) curved and (c)

straight lines. ( d ) is reproduced from many unequally spaced data points.

CURVEFITTING TECHNIQUES

All descriptive, curve fitting techniques seek a solution to the equation

y —f(x) over a specified range of x

where x is the independent variable and y the dependent variable. A length, r
t

(text-figs. 2 and 6),

called the radial length below, can be measured with reasonable accuracy and is a suitable dependent

variable. The angle (text-fig. 6) at the origin between the radial length and the reference line

AOB is an appropriate independent variable since, once this angle is known, the value of the

dependent variable is precisely defined.

With these coordinates, the equation representing a circle is r = a cos 9, but the outline of a

bivalve shell is, in general, too complex to be represented by such a simple equation. Accordingly,

techniques such as splines and Fourier series have been used. A spline curve may be fitted to a

series of data points provided there are no marked inflections. If such inflections occur, the data

points are chopped up into segments at the turning-points. These turning-points are called knots.

Suitable positions for knots (x) are shown on two shell outlines in text-fig. 4. Each part of the shells

would be accurately described by the coefficients of the appropriate spline function, but these

coefficients cannot be used to compare the shapes of the shells (which may belong to the same

species) because each function relates to a different range of the independent variable.
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text-fig. 4. Fitting spline curves to a shell

outline, x mark the position of knots.

A o A o

Fourier series coefficients have been used to define the outlines of ostracodes (Kaesler and Waters

1972), Bryozoa (Anstey and Delmet 1973), blastoids (Waters 1977), and sand grains (Ehrlich and
Weinberg 1970). As yet palaeontologists cannot readily understand what outline is being described

by a particular set of coefficients. This led Scott (1980), in his study of Foraminifera, to calculate

radii from the origin to the outline at 10° intervals from the Fourier series representation of an

outline. The thirty-six measurements allow the outline to be visualized, but the description is not

economical and the outline is undefined between the radii. A Fourier series in which both sine and
cosine terms are used is periodic, the value of the independent variable ranging from 0 to 360°,

and is well suited for describing the closed curves found in the above examples, provided the origin

and orientation are defined. In the case of a sand grain (text-fig. 5a) a choice of origin and orientation

can be made on the basis of its geometry. The line of orientation could be its longest axis ( AOB)

and the origin its mid-point. In radially symmetric organisms, the centre is a point of morphologic

significance and the orientation can be defined in morphologic terms. As in the case of the sand

grain, the origin and orientation of a bivalve can be defined geometrically (text-fig. 5b), but it is

not clear that such definitions would be homologous, or have any morphologic relevance. Biological

reference points within the curve, such as muscle insertions, are rarely preserved in fossil material

and are thus unsuitable. In those bivalves having a straight hinge, an origin and orientation can

be chosen which are morphologically homologous and are usually visible in fossil material. Since

they lie on, rather than within, the outline, a periodic function may not fit the outline most
economically.

The Tchebychev series provides a function in which the independent variable lies in the range
—1 to +1 and the NAGLibrary routine E02ADFenables this function to be fitted to an arbitrary

set of data points. For these reasons it was decided to use the coefficients of the polynomials of a

Tchebychev series to describe the generating curve of several bivalves. Experiments were designed

to discover how many data points are needed to ensure that the calculated coefficients are the

same wherever the data points are taken, and by whom. Further, how many coefficients are needed

to give a good representation, whether 6 or a transform of 9 as the independent variable gives

better results; how sensitive the coefficients are to a change of range in the initial data points, and
how effective they are as shape discriminators. The results of these experiments are given below.

The basic objective of this study is to create attributes (shape descriptors) which can be used to

study variation within populations and as aids to classification.

METHODSOF TAKING DATA POINTS AND CALCULATING THE
TCHEBYCHEVCOEFFICIENTS

A digitizing table consists of a plane surface over which a pointer may be moved. In the device used for this

study, the pointer consists of the intersection of a pair of cross wires. When a button is pressed the x,y
coordinates of the pointer are recorded to an accuracy of 0 025 mm. The cursor must lie on the table when
the coordinates are recorded. Thus the outline to be digitized must be drawn on a piece of paper, be
photographed, or be a projected image. Material embedded in matrix cannot be digitized directly.

text-fig. 5. Geometric method of defining the origin

and orientation of an outline. AOB= longest axis,

O being the centre, (a) sand grain, ( b ) bivalve.
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Initially, outlines of shells, scaled to be about 4 cm square, were drawn using a camera lucida. The origin

of the polar coordinates system, 0, was taken as the projection of a perpendicular from the tip of the umbo
on to the hinge (text-fig. 6b) and this was the first point digitized. When the specimen consisted of an external

representation of the shell, this origin is concealed by the umbonal swelling and its position must be inferred

from growth lines. The hinge AOB(text-fig. 6a) is the line of orientation and the posterior end of the hinge

(A) was the second point digitized. Subsequent points, i.e. P
t

(text-fig. 6a) were digitized from A to B.

text-fig. 6. Diagram showing the orientation of a

shell for digitizing. AOB= hinge line, u = tip of umbo,
0 = origin of the polar coordinates, O' = origin of x, y
coordinates. x h y, are the rectangular coordinates, and

r h 9
t

the polar coordinates of the point P .

The (Xj.y,-) coordinates can be used to calculate the polar coordinates (r
; ,0 ; ) of the point P

t
. The shape is

then defined by the polar equation:

r = r(9)

where 6 is the independent variable and r is the single valued function of 9. An approximation to this function

may be made by a Tchebychev series of the form

r = jC 0 T0(v)+ £ cmTJv)

where v, the independent variable, is 9 or a transform of 9, Tmiy) is the Tchebychev polynomial of degree m,

and the cm are the coefficients whose values define the particular function r(9) in each case. A full account of

the Tchebychev polynomials can be found, for example, in Froberg (1965). The general polynomial is defined

as Tm(v ) = cos (m arccos v) and the first few polynomials are

T0(v) = 1

7» = v

T2 (v) = 2v 2 —
1

T3 (v) = 4v 3 —3v

When v = cos 9, Tmv = cos (m9) and the expansion is effectively a Fourier cosine series, the form of which is

r = 2^0 + X COS( Ŵ )

where b„ are the coefficients of the Fourier cosine series. In this case it is a simple matter to calculate the area

of a specimen, provided 9 ranges from 0 to n radians (0-180°).

The area = —I- Y
4 V 2

The coefficients were calculated using the NAGlibrary routine E02ADFwhich computes the least-squares

approximation to an arbitrary set of data points. The introductory remarks to this routine states that more
points should be recorded where the outline changes markedly, and also at the ends of the range. The
independent variable is scaled so that its value ranges from —1 to + 1 by the linear transform

V = (2v —umax —umin ) / (u max —umin ) where V = scaled independent variable

vmax —maximum value of v

vmin = minimum value of v

Thus, if 9 ranges from 0 to 180° and v = cos 9 then V = cos 9.
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text-fig. 7. Root mean square residual (R.M.S.)

plotted against number of terms included.

The root mean square residual (R.M.S.) is a measure of the departure of the fitted curve from the original

data points. Initially the residuals decrease rapidly as successive terms are used (text-fig. 7); thereafter they

decrease more slowly, and indeed may increase slightly as unwanted fluctuations are produced. The number
of terms in the series required to give adequate accuracy is the number after which the residuals decrease

only slowly. In the case shown in text-fig. 7, six or seven terms give an adequate fit.

NUMBEROF COEFFICIENTS REQUIRED AND CHOICE OF THE
INDEPENDENTVARIABLE

The polar coordinates r and 9 of a digitized outline were used to calculate the coefficients of the polynomial

of the Tchebychev series from degree zero to degree eight. The plots of the R.M.S. (text-fig. 7) for the two
cases when v = 6 and v = cos 9 are typical and show that c 2 has little effect on the accuracy of the fit of the

polynomial. Thereafter the accuracy of the fit improves continuously as terms are added when v = cos 9. The
R.M.S. decreases irregularly when v = 9, and it is difficult to identify where significant flattening of the curve

occurs. The values of the coefficients when v = cos 9 are given in Table 1. It can be seen that when a new
coefficient (c,) is added, the value of the preceding one, c, _ j

changes considerably but the value of c, _ 2 is only

slightly altered. The addition of a new coefficient can cause a marked change in the value of all the preceding

coefficients when v = 9.

table 1. Value of the coefficients when polynomials of different degree are evaluated

v = cos 9 is the independent variable

Degree, m of

polynomial

Terms included

c 0 Cl c 2 c 3 C4 c 5 c 6 c 7 c 8

0 0-798

1 0-605 -0-251

2 0-609 -0-240 0-032

3 0-599 -0-239 0-054 0-050

4 0-606 -0-235 0052 0026 -0063
5 0-606 -0-237 0-049 0-030 -0-048 0-032

6 0-607 -0-237 0-048 0-031 -0048 0-026 -0-016

7 0-607 -0-237 0-049 0-030 -0-049 0-026 -0013 0-007

8 0-605 -0-237 0-050 0-030 -0-048 0-028 -0-013 0-003 -0-012
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text-fig. 8. Original outline of a shell overlain by
the outline reproduced using 5 terms (a, b )

and 8

terms (c, d). The independent variable is 9 (a, c ) and
cos 9 ( b , d).

The outline was recreated from the coefficients of the polynominal, the polar coordinates of the fitted points

being calculated using the NAGLibrary routine E02AEF. When v = 9 the outline is somewhat more circular

than the original (text-fig. 8a, c) whereas the ends of the outline are somewhat more inaccurate when v = cos 9

(text-fig. 8 b, d). This is an unavoidable consequence of using cos 9; the calculated curve must meet the hinge

at an angle of 90° when 9 = 0 or 180°. Cos 0 is preferred as the independent variable because an accurate

portrayal of the ends of the outline is considered of less importance than the general shape which is recreated

more accurately when v = cos 9. For this reason and because of the behaviour of the R.M.S. and the stability

properties of the coefficients noted above, it was decided to adopt cos 9 as the independent variable, rather

than 9.

Inspection of the residuals suggests that the five coefficients, c 0 -c 4 ,
are sufficient to give a good approximation

(text-fig. 8a, b). However, it was found that the outlines recreated using the eight coefficients, c 0 -c 7 , look much
more like Naiadites (text-fig. 8c, d). The three coefficients, c 5 -c 7 ,

although small in value and accounting for

little of the residual error, improve the detailed representation of the outline.

NUMBEROF DATA POINTS

About 100 data points were recorded on the generating curve of one shell. A random set of thirty of these

100 points were used to calculate the coefficients of the Tchebychev polynomial to degree 8. This was done

ten times for each of 30, 40, 50, 60, and 80 data points. The variability of c 0 is shown in text-fig. 9, the value

of the coefficient being plotted against the number of data points used. It is seen that when thirty data points

are used the value of the coefficient varies from 0-5 to 1-34 and is 0-94 when the full data set is used. About
100 data points yield a stable value of 0-94 for c 0 .

The same outline drawn and digitized by two further people gave values for c 0 ranging from 0-89 to 0-94

when about 100 data points were recorded. An error of about 5 %was considered satisfactory, particularly

considering that either the material or the technique was unfamiliar to the participants.

1-5

10 -

Co

0-5-

0 “I 1 1 1 1 1 1—
30 A0 50 60 80 126

No. of random data points

text-fig. 9. Value of c 0 plotted against

number of random data points selected

from a set of about 100 digitized on an

outline. In each case coefficients were

calculated to degree 8. When forty or

more data points are used, the ten values

of c 0 cannot be recorded separately at

this scale.
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THE EFFICIENCY OF THE COEFFICIENTS AS DISCRIMINATORS OF SHAPE

Two rather different shells (text-fig. 10) were selected, and drawn and digitized by different operators.

The coefficients were calculated to degree eight for each digitized outline. When the value of the

coefficients is plotted (text-fig. 10c), it is seen that certain coefficients (c 0 and c 3 ) have distinctly

different values for the two shells, whereas other coefficients (cj are approximately the same for

both shells. These two shells are of similar size, and the zeroth coefficient is a measure of size; it

is the radius of the semicircle which fits the outline giving the smallest root mean square residual.

Using this criterion as a measure of size, c 0 can be used to standardize the remaining coefficients.

Plots of the standardized coefficients ( cjc 0 , c 3 /c 0 ) (text-fig. 10c) show that the first coefficient cannot

be used to distinguish the two shells, but c 3 becomes more effective as a discriminator. This result

is expected, because c y is a crude measure of asymmetry which is refined by successive odd-numbered

coefficients. Negative values of c y indicate that the shells are asymmetric; that is, the posterior lobe

is larger than the anterior lobe. These results indicate that shapes of Naiadites shells of any size

may be discriminated using at most seven coefficients.

text-fig. 10. (a) and (b) two shells digitized and drawn by three different people, (c) value of the

coefficients c 0 -c 3 and the ratios c y lc 0 and c 3 /c 0 • = shell a. + = shell b.

EFFECTS OF POORPRESERVATION

As noted earlier, the origin of growth is often obscured in fossil material. However, provided the

umbo is not very large, the tests made above suggest that different operators will choose

approximately the same origin. A more serious problem is the fact that the anterior lobe is often

distorted, and thus its outline cannot be digitized with confidence. Although in Naiadites the anterior

lobe is small, it was found that very different interpretations of the anterior outline gave rise to

markedly different coefficients. Sometimes the distortion brings the anterior lobe below the level

of the hinge, thus it is not possible to measure the radial length when 6 = 180°. It was found that

provided v = cos 9 and 9 ranged from 0 to about 170° the coefficients obtained were similar to
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those obtained when 6 ranged from 0 to 180°. In reasonably well-preserved specimens of Naiadites

it is usually possible to use a range of 6 of 0-170°.

In Curvirimula it was found that the hinge rarely extended beyond the umbo, and often the

maximum value of 6 was 120°. As noted earlier, it is impossible to compare the coefficients of two

curves if the ranges to which they fit are very different.

Further, not only should the range of 6 be the same, but the morphologic structures described

should be the same if the coefficients are to be used as discriminators. Thus, if the range of 6 chosen

is 0 to 120°, the coefficients calculated for one shell (text-fig. 11a) describe the whole of the generating

curve, whereas those for a second shell (text-fig. lib) fail to describe the anterior lobe, and the two

sets of coefficients cannot be used to compare the generating curve of the two shells. In the genera

studied the umbo and the hinge are the only structures on the outline which are homologous.

However, the anterior lobe contains the anterior adductor muscles, part of the foot and its associated

musculature, and the size of the anterior lobe is a good indicator of the mode of life of the organism.

A suitable way of comparing these shells may be to describe the posterior lobe in terms of the

coefficients which define its outline, and to describe the anterior lobe in terms of area, a parameter

which can easily be calculated from the digitized points. Such a description would still be economical,

and a comparison of shells described in this way would be justified on theoretical grounds. This

method has not yet been tested.

text-fig. 1 1. Two specimens of Curvirimula having very

different maximum value of 6.

SUMMARYAND CONCLUSION

The shape of the generating curve of those shells (including Naiadites) which have a straight hinge

extending beyond the umbo may be described economically using the coefficients of a polynomial

of the Tchebychev series of the eighth degree. Such descriptors are very stable provided that about

100 data points are used and that cos0 is used as the independent variable. C0 is a measure of

size, and tests indicate that if it is used to standardize the coefficients of higher degree, the first five

scaled coefficients can be used as shape discriminators.

Describing shells in this way has the further advantage that, because the whole of the generating

curve can be reproduced, any other features of the shell such as the longest radial length can be

calculated from these nine coefficients. If 6 ranges from 0 to 180°, other features such as the area can

be calculated directly from the coefficients.

When the hinge is not straight, or does not extend beyond the umbo, the shape can still be

described, but it is difficult to specify the range of the independent variable in such a way that

different species can be compared. In the case of Curvirimula the hinge rarely extends beyond the

umbo. For this genus it is suggested that the coefficients of a very restricted portion of the generating

curve, together with a further parameter, the area of the anterior lobe, which has functional

significance, may be used in order to compare shells. For shells which lack a straight hinge it is

possible that a periodic function may be more appropriate as a shape discriminator. The umbo
could be retained for the purpose of orientation, but it may be necessary to define a geometric origin.
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